Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Raksa

Подписчиков: 0, рейтинг: 0
Raksa,  80Hg
Pouring liquid mercury bionerd.jpg
Raksa elemental dalam bentuk cair
Mercury Spectra.jpg
Garis spektrum raksa
Sifat umum
Nama, lambang raksa, Hg
Pengucapan
  • /raksa/
  • /mèrkuri/
Penampilan cairan mengkilap dan keperakan
Raksa dalam tabel periodik
Hidrogen (diatomic nonmetal)
Helium (noble gas)
Litium (alkali metal)
Berilium (alkaline earth metal)
Boron (metalloid)
Karbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oksigen (diatomic nonmetal)
Fluorin (diatomic nonmetal)
Neon (noble gas)
Natrium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silikon (metalloid)
Fosforus (polyatomic nonmetal)
Belerang (polyatomic nonmetal)
Klorin (diatomic nonmetal)
Argon (noble gas)
Kalium (alkali metal)
Kalsium (alkaline earth metal)
Skandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Kromium (transition metal)
Mangan (transition metal)
Besi (transition metal)
Kobalt (transition metal)
Nikel (transition metal)
Tembaga (transition metal)
Seng (transition metal)
Galium (post-transition metal)
Germanium (metalloid)
Arsen (metalloid)
Selenium (polyatomic nonmetal)
Bromin (diatomic nonmetal)
Kripton (noble gas)
Rubidium (alkali metal)
Stronsium (alkaline earth metal)
Itrium (transition metal)
Zirkonium (transition metal)
Niobium (transition metal)
Molibdenum (transition metal)
Teknesium (transition metal)
Rutenium (transition metal)
Rodium (transition metal)
Paladium (transition metal)
Perak (transition metal)
Kadmium (transition metal)
Indium (post-transition metal)
Timah (post-transition metal)
Antimon (metalloid)
Telurium (metalloid)
Iodin (diatomic nonmetal)
Xenon (noble gas)
Sesium (alkali metal)
Barium (alkaline earth metal)
Lantanum (lanthanide)
Serium (lanthanide)
Praseodimium (lanthanide)
Neodimium (lanthanide)
Prometium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Disprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Tulium (lanthanide)
Iterbium (lanthanide)
Lutesium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Wolfram (transition metal)
Renium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platina (transition metal)
Emas (transition metal)
Raksa (transition metal)
Talium (post-transition metal)
Timbal (post-transition metal)
Bismut (post-transition metal)
Polonium (post-transition metal)
Astatin (metalloid)
Radon (noble gas)
Fransium (alkali metal)
Radium (alkaline earth metal)
Aktinium (actinide)
Torium (actinide)
Protaktinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Amerisium (actinide)
Kurium (actinide)
Berkelium (actinide)
Kalifornium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrensium (actinide)
Ruterfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hasium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Kopernisium (transition metal)
Nihonium (unknown chemical properties)
Flerovium (post-transition metal)
Moskovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tenesin (unknown chemical properties)
Oganeson (unknown chemical properties)
Cd

Hg

Cn
emasraksatalium
Nomor atom (Z) 80
Golongan golongan 12
Periode periode 6
Blok blok-d
Kategori unsur   logam transisi
Berat atom standar (Ar)
  • 200,592±0,003
  • 200,59±0,01 (diringkas)
Konfigurasi elektron [Xe] 4f14 5d10 6s2
Elektron per kelopak 2, 8, 18, 32, 18, 2
Sifat fisik
Fase pada STS (0 °C dan 101,325 kPa) cair
Titik lebur 234,3210 K ​(−38,8290 °C, ​−37,8922 °F)
Titik didih 629,88 K ​(356,73 °C, ​674,11 °F)
Kepadatan mendekati s.k. 13,534 g/cm3
Titik tripel 234,3156 K, ​1,65×10−7 kPa
Titik kritis 1750 K, 172,00 MPa
Kalor peleburan 2,29 kJ/mol
Kalor penguapan 59,11 kJ/mol
Kapasitas kalor molar 27,983 J/(mol·K)
Tekanan uap
P (Pa) 1 10 100 1 k 10 k 100 k
pada T (K) 315 350 393 449 523 629
Sifat atom
Bilangan oksidasi −2 , +1, +2 (oksida agak basa)
Elektronegativitas Skala Pauling: 2,00
Energi ionisasi ke-1: 1007,1 kJ/mol
ke-2: 1810 kJ/mol
ke-3: 3300 kJ/mol
Jari-jari atom empiris: 151 pm
Jari-jari kovalen 132±5 pm
Jari-jari van der Waals 155 pm
Lain-lain
Kelimpahan alami primordial
Struktur kristal rombohedron
Struktur kristal Rhombohedral untuk raksa
Kecepatan suara cairan: 1451,4 m/s (suhu 20 °C)
Ekspansi kalor 60,4 µm/(m·K) (suhu 25 °C)
Konduktivitas termal 8,30 W/(m·K)
Resistivitas listrik 961 nΩ·m (suhu 25 °C)
Arah magnet diamagnetik
Suseptibilitas magnetik molar −33,44×10−6 cm3/mol (293 K)
Nomor CAS 7439-97-6
Sejarah
Penemuan Orang Mesir Kuno (sebelum 1500 SM)
Simbol "Hg": dari nama Latin hydrargyrum, ia sendiri berasal dari Yunani hydrárgyros, 'air-perak'
Isotop raksa yang utama
Iso­top Kelim­pahan Waktu paruh (t1/2) Mode peluruhan Pro­duk
194Hg sintetis 444 thn ε 194Au
195Hg sintetis 9,9 jam ε 195Au
196Hg 0,15% stabil
197Hg sintetis 64,14 jam ε 197Au
198Hg 10,04% stabil
199Hg 16,94% stabil
200Hg 23,14% stabil
201Hg 13,17% stabil
202Hg 29,74% stabil
203Hg sintetis 46,612 hri β 203Tl
204Hg 6,82% stabil

Raksa (nama lama: air raksa) atau merkuri atau hydrargyrum (bahasa Latin: Hydrargyrum, air/cairan perak) adalah unsur kimia pada tabel periodik dengan simbol Hg dan nomor atom 80.

Unsur golongan logam transisi ini berwarna keperakan dan merupakan satu dari lima unsur (bersama cesium, fransium, galium, dan brom) yang berbentuk cair dalam suhu kamar, serta mudah menguap. Hg akan memadat pada tekanan 7.640 Atm. Kelimpahan Hg di bumi menempati di urutan ke-67 di antara elemen lainnya pada kerak bumi. Di alam, merkuri (Hg) ditemukan dalam bentuk unsur merkuri (Hg0), merkuri monovalen (Hg1+), dan bivalen (Hg2+). keduanya merupakan logam paling rapuh.

Raksa banyak digunakan sebagai bahan amalgam gigi, termometer, barometer, dan peralatan ilmiah lain, walaupun penggunaannya untuk bahan pengisi termometer telah digantikan (oleh termometer alkohol, digital, atau termistor) dengan alasan kesehatan dan keamanan karena sifat toksik yang dimilikinya. Unsur ini diperoleh terutama melalui proses reduksi dari cinnabar mineral.Densitasnya yang tinggi menyebabkan benda-benda seperti bola biliar menjadi terapung jika diletakkan di dalam cairan raksa hanya dengan 20 persen volumenya terendam.

Riwayat pemanfaatan

Petunjuk arkeologis tertua mengenai pemanfaatan raksa ditemukan pada pekuburan Mesir Kuno bertanda waktu 1500 Sebelum Masehi.

Catatan-catatan serta temuan-temuan dari berbagai peradaban kuno juga menyebutkan penggunaan raksa. Di Cina dan Tibet raksa dianggap berkhasiat memperpanjang usia, mengobati retak tulang (fraktur), dan memelihara kesehatan, meskipun pada kenyataannya terbalik karena uap raksa sangat toksik. Kaisar pertama Tiongkok bersatu, Qín Shǐ Huáng Dì, dilaporkan meninggal karena meminum raksa bercampur bubuk giok yang dianggap sebagai ramuan panjang usia.

Aristoteles menyebutkan bahwa Daedalus membuat patung kayu berwujud Dewi Venus tampak bergerak dengan menuang raksa di dalamnya. Orang-orang Yunani Kuno, Mesir Kuno, dan Romawi Kuno memanfaatkan sinabar (raksa sulfida) sebagai campuran olesan atau kosmetik. Para alkimiawan memang beranggapan bahwa raksa merupakan prima materia (unsur awal) yang merupakan asal-usul semua logam. Raksa dipercaya dapat membentuk logam lain dengan mengatur kualitas dan kuantitas belerang yang dicampur dengan raksa. Campuran yang paling murni membentuk emas, dan ini menjadi tujuan utama banyak alkimiawan untuk membuat emas dari raksa. Di waktu sekitar 500 SM raksa dipakai sebagai bahan amalgam (campuran logam).

Di Lamanai, tempat yang pernah menjadi kota utam kebudayaan Maya, suatu sisa kolam raksa ditemukan di bawah suatu lapangan. Di bulan November 2014 sejumlah besar raksa ditemukan di dalam satu kamar berlokasi sedalam 20 meter di bawah bangunan piramid bernama "Kuil Ular Berbulu", bangunan terbesar ketiga peninggalan Teotihuacan, Mexico, bersama-sama dengan "patung giok, sisa tubuh jaguar, dan sekotak berisi cangkang berukir dan bola karet".

Tambang raksa di Almadén (Spanyol), Monte Amiata (Italia), dan Idrija (sekarang di Slovenia) mendominasi produksi raksa sejak pembukaannya 2500 tahun lalu, hingga deposit baru ditemukan di akhir abad ke-19.

Pencemaran

Secara alamiah, pencemaran Hg berasal dari kegiatan gunung api atau rembesan air tanah yang melewati deposit Hg. Apabila masuk ke dalam perairan, merkuri mudah ber-ikatan dengan klor yang ada dalam air laut dan membentuk ikatan HgCl. Dalam bentuk ini, Hg mudah masuk ke dalam plankton dan bisa berpindah ke biota laut lain. Merkuri anorganik (HgCl) akan berubah menjadi merkuri organik (metil merkuri) oleh peran mikroorganisme yang terjadi pada sedimen dasar perairan. Merkuri dapat pula bersenyawa dengan karbon membentuk senyawa organo-merkuri. Senyawa organo-merkuri yang paling umum adalah metil merkuri yang dihasilkan oleh mikroorganisme dalam air dan tanah. Mikroorganisme kemudian termakan oleh ikan sehingga konsentrasi merkuri dalam ikan meningkat. Metil Hg memiliki kelarutan tinggi dalam tubuh hewan air sehingga Hg terakumulasi melalui proses bioakumulasi dan biomagnifikasi dalam jaringan tubuh hewan air, dikarenakan pengambilan Hg oleh organisme air yang lebih cepat dibandingkan proses ekskresi.

Toksisitas

Keracunan kronis oleh merkuri dapat terjadi akibat kontak kulit, makanan, minuman, dan pernapasan. Toksisitas kronis berupa gangguan sistem pencernaan dan sistem saraf atau gingivitis. Akumulasi Hg dalam tubuh dapat menyebabkan tremor, parkinson, gangguan lensa mata berwarna abu-abu, serta anemia ringan, dilanjutkan dengan gangguan susunan saraf yang sangat peka terhadap Hg dengan gejala pertama adalah parestesia, ataksia, disartria, ketulian, dan akhirnya kematian. Wanita hamil yang terpapar alkil merkuri bisa menyebabkan kerusakan pada otak janin sehingga mengakibatkan kecacatan pada bayi yang dilahirkan. Hasil penelitian menunjukkan bahwa otak janin lebih rentan terhadap metil merkuri dibandingkan dengan otak dewasa. Konsentrasi Hg 20 µgL dalam darah wanita hamil sudah dapat mengakibatkan kerusakan pada otak janin. Merkuri memiliki afinitas yang tinggi terhadap fosfat, sistin, dan histidil yang merupakan rantai samping dari protein, purin, pirimidin, pteridin, dan porifirin. Dalam konsentrasi rendah ion Hg+ sudah mampu menghambat kerja 50 enzim yang menyebabkan metabolisme tubuh terganggu. Garam merkuri anorganik bisa mengakibatkan presipitasi protein, merusak mukosa saluran pencernaan, merusak membran ginjal maupun membran filter glomerulus. Toksisitas kronis dari merkuri organik ini dapat menyebabkan kelainan berkelanjutan berupa tremor, terasa pahit di mulut, gigi tidak kuat dan rontok, albuminuria, eksantema pada kulit, dekomposisi eritrosit, serta menurunkan tekanan darah. Keracunan metil merkuri pernah terjadi di Jepang, dikenal sebagai Minamata yang mengakibatkan kematian pada 110 orang.

Lihat pula

Pranala luar

Daftar Pustaka

  • Herman DZ (2006). "Tinjauan terhadap tailing mengandung unsur pencemar As, Hg, Pb, dan Cd". J Geol Indones. 1: 31–36. 
  • Klaassen CD, Amdur MO, Doull J (1986). Toxicology The Basic Science of Poisons. New York: Macmillan Publishing Company. 
  • Palar H (1994). Pencemaran dan Toksikologi Logam Berat. Jakarta: Rineka cipta. 
  • Widowati W, Sastiono A, Jusuf R (2008). Efek Toksik logam Pencegahan dan Penanggulangan Pencemaran. Yogyakarta: Andi. ISBN 978-979-29-0448-2. 

Новое сообщение